Sublacunary sets and interpolation sets for nilsequences

نویسندگان

چکیده

<p style='text-indent:20px;'>A set <inline-formula><tex-math id="M1">\begin{document}$ E \subset \mathbb{N} $\end{document}</tex-math></inline-formula> is an interpolation for nilsequences if every bounded function on id="M2">\begin{document}$ can be extended to a nilsequence id="M3">\begin{document}$ $\end{document}</tex-math></inline-formula>. Following theorem of Strzelecki, lacunary nilsequences. We show that sublacunary sets are not Here id="M4">\begin{document}$ \{r_n: n \in \mathbb{N}\} with id="M5">\begin{document}$ r_1 < r_2 \ldots <i>sublacunary</i> id="M6">\begin{document}$ \lim_{n \to \infty} (\log r_n)/n = 0 Furthermore, we prove the union and finite Lastly, provide new class Bohr almost periodic sequences, as result, obtain example id="M7">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-step which sequences.</p>

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermite Interpolation with Directed Sets

The problem of interpolating a set-valued function with convex images is addressed by means of directed sets. A directed set will be visualised as a usually nonconvex set in R consisitng of three parts, the convex, the concave and the mixed-type part together with its normal directions. In this Banach space, a mapping resembling the Kergin map is established. The interpolating property and erro...

متن کامل

Interpolation and Approximation from Convex Sets

Let X be a topological vector space, Y = IR n , n 2 IN, A a continuous linear map from X to Y , C X, B a convex set dense in C, and d 2 Y a data point. We derive conditions which guarantee that the set B \ A ?1 (d) is nonempty and dense in C \ A ?1 (d). Some applications to shape preserving interpolation and approximation are described.

متن کامل

PCF self-similar sets and fractal interpolation

The aim of this paper is to show, using some of Barnsley’s ideas, how it is possible to generalize a fractal interpolation problem to certain post critically finite (PCF) compact sets in R. We use harmonic functions to solve this fractal interpolation problem. © 2013 IMACS. Published by Elsevier B.V. All rights reserved. MSC: 28A78; 58E20

متن کامل

SOME SIMILARITY MEASURES FOR PICTURE FUZZY SETS AND THEIR APPLICATIONS

In this work, we shall present some novel process to measure the similarity between picture fuzzy sets. Firstly, we adopt the concept of intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets and picture fuzzy sets. Secondly, we develop some similarity measures between picture fuzzy sets, such as, cosine similarity measure, weighted cosine similarity measure, set-theoretic similar...

متن کامل

FUZZY ORDERED SETS AND DUALITY FOR FINITE FUZZY DISTRIBUTIVE LATTICES

The starting point of this paper is given by Priestley’s papers, where a theory of representation of distributive lattices is presented. The purpose of this paper is to develop a representation theory of fuzzy distributive lattices in the finite case. In this way, some results of Priestley’s papers are extended. In the main theorem, we show that the category of finite fuzzy Priestley space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2022

ISSN: ['1553-5231', '1078-0947']

DOI: https://doi.org/10.3934/dcds.2021175